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The evolution of the two- and three-dimensional structures in a temporally growing 
plane shear layer is numerically simulated with the discrete vortex dynamics 
method. We include two signs of vorticity and thus account for the effect of the 
weaker boundary layer leaving the splitter plate which is used to create a spatially 
developing mixing layer. The interaction between the two layers changes the 
symmetry properties seen in a single vorticity-layer calculation and results in closer 
agreement with experimental observations of the interface between the two streams. 
Our calculations show the formation of concentrated streamwise vortices in the braid 
region between the spanwise rollers, whereas the spanwise core instability is observed 
to grow only initially. Comparison with flow visualization experiments is given, and 
we find that the processes dominating the early stages of the mixing-layer 
development can be understood in terms of essentially inviscid vortex dynamics. 

1. Introduction 
The motivation for studying the two- and three-dimensional instability mech- 

anisms of the plane mixing layer is twofold: this flow represents one of the well- 
defined base flows for the investigation of generic formation processes that lead to 
complex three-dimensional structures, and a t  the same time it  also approximates 
situations of considerable practical interest such as the flows in a chemical reactor, 
in a combustion chamber, and behind an airfoil. The work of Brown & Roshko (1974) 
revealed the existence of coherent two-dimensional vortical structures in a high- 
Reynolds-number turbulent planar mixing layer. Discrete vortex dynamics 
simulations (Ashurst 1979) have reproduced the generation of these structures as 
well as the pairing process, which represents the primary growth mechanism of the 
layer, and the related turbulent shear stress. Further experimental investigations 
(Konrad 1976; Bernal 1981 ; Breidenthal 1981 ; Jimenez 1983) indicate that there is 
a secondary vortex structure in the flow direction. This streamwise vorticity 
apparently arises from natural instability to three-dimensional perturbations. Clean, 
laminar initial conditions can postpone its appearance until four or five wavelengths 
of the Kelvin-Helmholtz instability downstream of the splitter plate. However, 
deliberate localized or periodic disturbances create streamwise structures which are 
similar in their behaviour to the naturally turbulent flow (Lasheras, Cho & 
Maxworthy 1986; Lasheras & Choi 1988). As long as the outer boundary conditions 
maintain the velocity difference across the layer, the Kelvin-Helmholtz instability 
continues to generate the two-dimensional spanwise vorticity structure, while the 
secondary structure appears to ‘lock in’ to a spanwise spacing and location which it 
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can maintain even through several pairings of the two-dimensional structure. It is 
still not clear exactly how the streamwise vorticity is formed. Bernal infers from his 
experiments the presence of vortex lines alternatingly wrapping around the upstream 
and the downstream roller, thus resulting in pairs of counter-rotating streamwise 
vortices in the thin vorticity region (the braids) between the spanwise vortices. 
Breidenthal, on the other hand, observes an undulation of the core of the spanwise 
vortices which then develops into streamwise vorticity in the strain field of the 
neighbouring rollers. While the observations of Breidenthal and Bernal demonstrate 
the presence of streamwise vorticity both in the core and in the braid regions, they 
do not resolve the question of where it originates. 

The evolution of three-dimensional disturbances in a plane shear layer has also 
been investigated by means of linear stability calculations. Pierrehumbert & Widnall 
(1982) theoretically analyse a periodic array of Stuart vortices and show the 
existence of an instability mode of the vortex cores. They conclude that the wiggle 
of the cores of the spanwise vortices observed by Breidenthal might, be a 
manifestation of this instability. Corcos & Lin (1984) criticize this work of 
Pierrehumbert & Widnall on the grounds that the background vorticity pattern 
selected has a symmetry that is not produced by the Kelvin-Helmholtz instability. 
Consequently, Corcos & Lin try an alternative approach of solving a two-dimensional 
problem coupled to the spanwise average of a three-dimensional velocity field. They 
conclude that in the presence of the two-dimensional pairing instability, there will be 
only slight effects from three-dimensional instabilities on the overall growth of the 
layer, but their work does not deal with the identification of a most amplified 
spanwise wavelength. Lin & Corcos (1984) assume that if the spanwise vorticity is 
deformed, then there will be regions of alternating signs of streamwise vorticity 
which are subjected to a streamwise strain. They numerically integrate this model 
problem and find that sheets of streamwise vorticity may collapse to concentrated 
round vortex filaments under certain conditions of strain, spacing and viscosity 
values. Neu (1984) presents an analytical theory of this phenomenon. As a result, 
while not knowing the details of the formation process, it  can be concluded that 
alternating regions of streamwise vorticity may, in the strain field of the two- 
dimensional structures, form very concentrated vortex filaments in the streamwise 
direction, which do not inhibit further two-dimensional pairing. 

Two recent calculations may indicate the generic formation process of streamwise 
vorticity. In a model problem calculation, Aref & Flinchem (1984) consider the 
dynamics of a vortex filament when the Biot-Savart interaction is truncated to the 
velocity that is induced by the local filament curvature. In  this approximation, 
soliton waves may propagate along the filament. They calculate the response of such 
a wave when a mean shear velocity is added: the wave now no longer behaves like 
a soliton and instead produces spanwise wiggles with a wavelength that depends on 
the filament circulation and the applied shear rate. Pierrehumbert (1986) arrives a t  
the same result by analysing the linear instability characteristics of the local 
induction approximation. A more complete calculation by Rogers & Moin (1987) 
substantiates this physical picture. By means of a direct simulation based on the 
Navier-Stokes equations on a 12€J3 grid they investigate the evolution of small 
random fluctuations of the flow variables under the influence of a mean shear. It is 
observed that the vorticity fluctuations are stretched out in the direction of the 
major strain axis and in this process become more concentrated, thus leading to a 
preponderance of horseshoe vorticity. The legs of these horseshoes disappear into the 
background random vorticity field. These observations suggest that some knowledge 
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about the formation process of the streamwise structures can be gained from an 
analysis of inviscid vorticity dynamics. Consequently, it! is appealing to  simulate the 
mixing layer by means of a three-dimensional vortex filament calculation with the 
full Biot-Savart interaction. 

Three-dimensional vortex dynamics simulations are possible on today's computers 
(Leonard 1985). Lagrangian tracking of the filaments replaces difficulties associated 
with numerical diffusion in finite difference solutions of the Navier-Stokes equations. 
Since only the vorticity field must be discretized instead of the complete velocity 
field, there is also the economy of an adaptive mesh. A discouraging feature is the 
ever increasing growth rate of the filament arclength in three-dimensional inviscid 
flows (Siggia 1985). Vortex stretching renders the calculations very costly or requires 
a very small computational domain. Even with these limitations, the numerical 
integration of this dynamical problem presents a promising way to gain insight into 
the evolution of a shear layer, since this approach allows us to specify precisely initial 
perturbations in a nominally two-dimensional flow and then track their growth well 
into the nonlinear regime. 

In  contrast to our Lagrangian calculation, Riley, Metcalfe & Orszag (1986) have 
done a direct Navier-Stokes simulation of a three-dimensional shear layer on a 643 
mesh in which one streamwise wavelength was tracked. They consider small random 
disturbances in all velocity components in addition to a hyperbolic tangent profile of 
the velocity in the flow direction. The maximum Reynolds number based on the 
Taylor microscale is 50, which is much lower than the corresponding values in many 
experiments and indicates that small-scale effects will be suppressed by viscous 
diffusion. The developing small scales, e.g. the thinning of the braid region and the 
evolution of streamwise streaks or horseshoe vortices, present a difficulty for the 
direct method which sets a viscosity and resolves all lengthscales. These developing 
small scales either require a large number of grid points (especially since to achieve 
computational speed these direct methods use fast Fourier transforms which require 
a uniform mesh spacing and thus cannot adapt a local region except by coordinate 
transformations) or a large viscosity value and hence a low Reynolds number. As 
we will discuss later, the vortex method also has limitations, and the two methods 
should be used to complement each other. 

The outline of this paper is as follows: in $2 we give the details of our 
computational technique, and in $3  the simulation results are presented. We first 
discuss, in $3.1, the simpler case in which a shear layer is represented by one sign of 
vort'icity. At the suggestion of Paul Dimotakis we also investigated the more 
complicated case which includes two signs of vorticity. Measurements by Lang 
(1985) and Dimotakis of spanwise vorticity (laser measured velocity a t  four points) 
indicates that the weaker boundary-layer vorticity is observed a t  downstream 
locations and becomes distributed across the mixing layer. This observation points 
t'owards a mingling of the two signs of vorticity without local cancellation and with 
the possibility that imperfect filaments of the weaker layer in the strain field formed 
by the Kelvin-Helmholtz instability might lead to the formation of streamwise 
vorticity. These simulations are presented in $3.2. Motivated by the experimental 
investigation of Lasheras et al. (1986), we attempted to analyse the effect of a strong 
localized perturbation, which is discussed in $3.3. In  $4 we compare our numerical 
results with experimental observations, emphasizing the progressive deformation 
and growth of the interface between the two boundary layers leaving the splitter 
plate. Concluding remarks are given in $ 5 .  
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2. The vortex dynamics method 
Our goal is to simulate numerically an unbounded incompressible flow field of 

which only a small portion is rotational. Thus, it is convenient to formulate the 
problem in terms of the vorticity variable. I ts  definition along with the condition of 
non-divergent velocity allows a complete description of the flow kinematics from the 
Biot-Savart law (e.g. Batchelor 1967). For this purpose, we discretize the vorticity 
field into continuous filaments, which are represented by a number of node points 
along their centrelines. The node velocities are evaluated according to a modified 
Biot-Savart law and the temporal evolution of the flow can then be obtained by 
advancing the nodes over a small timestep with their respective velocities. The 
modification to the Biot-Savart law is the assumption of an invariant vorticity 
distribution around the filament, based on the functional form 

3an2 
y ( x - r )  = 

47c(lx-r[2+an2):' 

where we use the notation of Leonard (1985). This assumption is advantageous in 
that a node velocity may be found by one integration along the filament arclength 
and that no velocity singularities will be generated. However, the assumption is 
detrimental in that no changes in the vorticity shape will occur due to a small-scale 
strain effects and thus, i t  determines a small-scale resolution limit. The vorticity 
distribution from a filament with circulation r follows as 

where r ( s )  describes the filament centreline in terms of the arclength s. Here the 
combination of an2 is a measure of the vortical domain. Following earlier studies (cf. 
Leonard 19235, p. 528) which considered constant vorticity within a tube and zero 
vorticity outside the tube, we will refer to n as the core radius and adjust the value 
of a to reflect other possible distributions of vorticity. If a vortex ring with a 
Gaussian vorticity distribution is simulated by a single vortex filament with the 
above vorticity distribution, then the self-induced velocity is correctly reproduced 
when a has the numerical value of 0.413. As a result, we have used this value 
exclusively throughout our simulations, and we will use 2 n  as the reference length, 
see below. 

The vorticity of an infinitely long straight filament with the smoothing of equation 
( 1 )  decays like the inverse fourth power of the distance from the filament. The 
two-dimensional stream function related to this infinite filament behaves like 
In (Ix-rI2 +an2), and its velocity profile is similar to the exponential profile obtained 
as the time-dependent solution for the viscous diffusion of the vorticity from an 
isolated line source. 

Incorporation of this vorticity distribution into the Biot-Savart law then allows us 
to obtain the velocity u a t  any position x by integrating over the arc length of all 
N filaments in the flowfield 

[ x - r r ( s .  t ) ]  x f(8) 
u(x,t) = -- 'T CIS 

?tn " s c, ( [x - r&,  t ) ] 2 + , 4 ) f  
(3) 

where i ( s )  is the filament tangent vector. This modified Biot-Savart law has a 
velocity that remains bounded even for x-r(s)-O,  When using this equation to 
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evaluate the influence of filament i on filament j we replace CT; by ;(B;+U;) to 
conserve linear and angular momentum, as proposed by Leonard (1980). The 
filament radius gi is kept uniform along the arclength but changes with time to 
maintain a constant filament volume. This procedure conserves energy if the cores do 
not overlap. A more costly scheme suggested by Leonard (1980) conserves energy 
even if the cores do overlap by determining an average velocity over the cross-section 
of the filament (the smoothing distribution is the weighting function and the gi are 
now constant in time). While vorticity volume is not conserved, it is no longer 
appropriate to think of these filaments as isolated vortex tubes. To our knowledge, 
this scheme has yet to be tried. Overlap of the filament cores, however, provides a 
smoother distribution of the vorticity and, as described below, has been shown to be 
necessary for convergence to the Euler equations. 

There has been new work on convergence proofs of vortex schemes, and $4 of 
Anderson & Greengard (1985) gives a description of two possible choices in three- 
dimensional vortex modelling : (i) connected filaments where the vortex stretching is 
naturally found by the change in filament length and (ii) disconnected discrete 
vortices where local strain must be calculated in order to change the vorticity 
magnitude. Beale (1986) gives a convergence proof of the second scheme and 
Greengard (1986) a proof of the connected filament method, but his proof does not 
consider the addition of node points in order to resolve large strain effects. The style 
of these proofs is to bound the errors in the discrete velocity versus the exact velocity 
from a known vorticity distribution. A sufficiently smooth initial distribution is 
assumed, the smoothness determines the time interval in which the error estimates 
are valid. Stability is shown in the sense that sufficiently small errors in the 
computed motion yield bounded errors in velocity. These proofs indicate that the 
vortex core term should be larger than the inter-vortex spacing as both parameters 
are reduced to zero. Conservation of energy is not discussed, the difficulty being that 
with finite cores there is no closed-form expression for the energy density. If we 
modify the energy integral in the same manner as was done to the Biot-Savart 
integral, then we add the core term to the inverse distance factor in the integrand of 
scalar products of the vorticity vectors (see Lamb 1932, p. 217). The resulting energy 
quantity is not constant when multiple filaments interact a t  distances which are not 
large with respect to the core size. However, in cases where the filaments do have 
large separation before and after a close encounter, we do find this modified energy 
term returning to its initial value. For example, consider two ring vortices moving 
in the same direction with a common axis, each ring described as one filament. In this 
symmetric configuration, the rings will alternate in passing through each other, the 
smoke-ring problem. The modified energy integral value will oscillate about a mean 
value, the amplitude of the oscillation depending on the variation in the closest 
approach to the largest separation. The mean value decreases with time but the 
decay rate is dependent on the selected integration scheme and error tolerances. 

Considering that the convergence proofs are still limited in their applications, then 
simulations of known problems can be used to calibrate a numerical scheme. In  two 
dimensions an obvious case is the inviscid Kelvin-Helmholtz instability of a shear 
layer. In  order to reproduce closely the desired velocity profile, Nakamura, Leonard 
& Spalart (1982) used many layers of discrete vortices and examined the core-size 
effect in terms of the inter-vortex spacing. As we stated before, they find core overlap 
is desirable. However, because we wish to simulate three-dimensional shear layers 
and need as few vortices as possible, we studied the same two-dimensional problem 
but with only one layer of discrete vortices. The growth rates of long wavelength 
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disturbances have the correct trend, but we obtain growth rates which are too large 
for short wavelengths. In these calculations a symmetric core distribution of 
vorticity with constant size is maintained when, in fact, the strain field should be able 
to distort the vorticity distribution about each discrete vortex ; this may explain the 
discrepancy observed for small wavelengths. Thus, we will use long-wavelength 
disturbances in this work. 

In three dimensions, Kelvin's analysis of bending modes for a rectilinear vortex 
tube provides another calibration problem for the vortex method. It should be kept 
in mind, however, that the following results were obtained for an isolated filament 
and might not hold for a collection of overlapping filaments. When compared to 
Kelvin's calculation for a single filament with uniform vorticity within a core of 
radius CT, the correct long-wavelength limit instability ( K U + ~ ,  where K is the 
wavenumber) is obtained with the modified Biot-Savart integral, but in addition, a 
spurious short-wave instability is observed for K(T near 2.3 (see figure 3 in Leonard 
1985). This instability is close in its wavelength to a physical higher radial mode 
instability a t  KU = 2.5 for which the circular cross-section becomes elliptical (Tsai & 
Widnall 1976; Robinson & Saffman 1984), but we have no reason to assume 
dynamical similarity. Thus, the modified Biot-Savart relation yields instabilities a t  
both long and short wavelengths. As we will see, the short-wave instability creates 
numerical difficulties by producing high filament curvature and thus requiring many 
node points along the filament. In  summary, we have a scheme which conserves 
linear and angular momentum without generating velocity singularities, but which 
does not strictly conserve energy and may not have the proper instability growth 
rate in the short-wavelength limit but does capture the long-wavelength instability ; 
therefore, for the most part, we restrict the initial perturbations to long wavelengths. 
We now give, in the following, numerical details of the shear-layer simulations. 

A plane shear layer which is discretized into one layer of vortex filaments has a 
characteristic vorticity thickness given by the filament core diameter of ~ C T ,  and so 
we use the filament diameter as our reference length. As a result, (r = 0.5. By taking 
the circulation per unit length of the shear layer as the characteristic velocity, we can 
then render all velocities and times dimensionless. 

In order to evaluate the Biot-Savart integral with second-order spatial accuracy, 
we represent the filament centreline by a cubic spline using the straight-line distance 
between the node points as the spline parameter. This allows us to determine the 
tangent vector a t  each node point, which presents an improvement over previous 
schemes using straight-line segments or circular arcs. In  addition, the use of the 
spline formulation enables us to obtain a better representation of the locally induced 
velocity by subdividing filament sections close to a node in the process of calculating 
the self-induced velocity. Furthermore, the spline representation permits the easy 
introduction of additional nodes during the calculation in order to maintain a 
satisfactory resolution even when considerable vortex bending and stretching occurs. 
The filaments are repeatedly remeshed so that the arclength between successive 
nodes is always less than one but more than half of the initial core radius. In addition, 
the local curvature is determined and nodes are spaced in such a way that, within the 
above bounds, the product of the arclength between the nodes and the local 
curvature does not exceed in. These criteria were established in order to provide an 
improved resolution of highly curved regions of the filaments without wasting 
numerical effort on the representation of scales too small to be accurately represented 
by our filament model. Their efficiency was checked by means of test calculations for 
a vortex ring. In  the course of the simulations to be described, the number of nodes 
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increases approximately twice as fast as the total arclength, which shows that a 
considerable number of nodes are introduced for resolution of filament curvature. 

Both the spatial and the temporal integration are carried out with second-order 
accuracy, with the node points being advanced in time according to a pre- 
dictor-corrector scheme 

1 X’ = ~ ( t )  + u(t)  At, 

~ ( t + A t )  = x ( f ) + ; ( ~ ( t ) + ~ ’ ) A t . J  

The timestep is continuously adjusted so that the largest velocity component 
difference in u’ and u(t) a t  any node point multiplied by the current timestep gives 
a length which is less than 2 %  of the initial core radius. In the course of the 
calculation to be discussed below, the timestep is reduced by approximately two 
orders of magnitude. In  test calculations carried out for the model problem 
investigated by Siggia (l985), this predictor-corrector scheme proved to  be as 
efficient as fourth-order Runge-Kutta time integration. At the same time, we prefer 
it to a multistep technique such as Adams-Bashforth, since we desire the ability to 
change the timestep a t  each step independent of previous timestep values. Since we 
do not’ have to use previous time level information, less work is required when we 
remesh a filament. We do not have to interpolate old velocities to new node point 
locations as the filament stretches and bends. Velocity values have to be stored for 
only two levels per node, so the total storage comes to  nine times the number of node 
points (three spatial coordinates and six velocity components). Higher-order 
Runge-Kutta schemes with the same storage requirement are possible (Williamson 
1980), but would require more computational effort. In  vectorized calculations on a 
computer with no storage limitation, we precalculate the tangent vector a t  each node 
point from the spline representation. The integrand of the Biot-Savart law is 
evaluated in a nested loop which only examines each pairwise interaction once. We 
have not examined the possibility of treating those filament sections experiencing 
large acceleration (due to local rotation around neighbouring filaments) with a 
reduced timestep as compared to those filaments that are being convected a t  a large 
but steady speed. 

I n  order to get a better understanding of how changes in the vorticity field affect 
the structure of the plane shear layer and to be able to compare our results to flow 
visualization experiments of Lasheras & Choi (1988), we also compute the evolution 
of the interface separating the two streams leaving the splitter plate. This is achieved 
by initially placing several hundred passive marker particles along straight lines in 
the spanwise direction between the two streams and then calculating their 
trajectories simultaneously with those of the vortex filaments. Depending on the 
local stretching, additional marker particles are introduced along these lines in the 
same way as nodes are introduced along the vortex filaments. In  anticipation of 
the observed uneven stretching, the initial marker particle line density is larger in the 
region near the free stagnation point. For visualization of this interface we plot these 
marker particle lines as well as connecting lines at a constant spanwise spacing. 

To obtain a problem that is numerically tractable, we limit ourselves to the 
analysis of a shear layer which is spatially periodic in two directions and develops in 
time. We lose the small asymmetry in the streamwise direction caused by the 
spreading of the mixing layer, but gain the ability to resolve more degrees of freedom 
in the nonlinear flowfield. The Biot-Savart evaluation of the velocity requires 
integration over all the vorticity in the flowfield, i.e. integration over all the periodic 
images of the control volume as well. For the two-dimensional case Nakamura et al. 
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(1982) use the analytic expressions for the summation over all images given in Lamb 
(1932). For the three-dimensional case, however, such an expression has not yet been 
found, so that we are forced to truncate the interaction to a finite number of images. 
Consequently, when evaluating the velocity of a node, we take into account the 
influence of each filament segment and its six closest images in the flow direction. 
This means that if xi] denotes the closest distance between node i and node j and 
xt represents the periodic length of the computational domain in the x-direction, then 
the interaction is evaluated for the seven distances that have x-components of 
~ , ~ + n x ~ ,  where the integer n goes from - 3  to  + 3  and includes 0, the closest image. 
Only the nearest segment image is considered in the spanwise direction, i.e. only yij 
is used. For the case of two layers of opposite vorticity there will be some long-range 
cancellation effects, and the number of images needed to achieve a certain accuracy 
is thus reduced. Furthermore, different levels of approximation to the various long- 
range interactions could be explored, but that will require further study in order to 
determine the appropriate parameter values. 

I n  an incompressible viscous fluid, axial stretching of a vortex tube will reduce its 
cross-sectional area until a balance occurs between inward motion and outward 
viscous diffusion of vorticity. We have not included any increase of the core 
parameter due to viscous diffusion. A separate study of the viscous interaction of 
vortex rings yields vortex reconnection when sections of the rings with anti-parallel 
vorticity vectors approach each other (Ashurst & Meiron 1987). This topology 
change will not be considered in the present work as its occurrence is not likely during 
the early stages of the shear-layer evolution. I n  addition, we must remember that the 
isolated filament analysis indicates that  our symmetric core parameter is not correct 
when the filament radius of curvature becomes comparable to the core size. 
Therefore, once a simulation has produced small-scale three-dimensional effects, 
continuation of the calculation demands some decisions. Should short-wavelength 
disturbances be calculated by replacing a single filament with many filaments a t  a 
much larger computational cost, or must we filter away short-wave effects and 
attribute this to viscous dissipation? At this time, we have not explored either 
approach. 

In  our simulation, the continued reduction of the timestep combined with the 
increasing number of node points leads us to stop the calculation as we approach 
diminishing returns in terms of advancing the problem time versus the computational 
cost per timestep. For example, when we start a calculation with 4050 nodes, the first 
timestep requires 48 s on a CRAY1, while the last timestep with 14700 nodes takes 
500 s. However, as will be seen in the next section, this calculation has carried the 
shear layer well into the nonlinear regime. 

3. Results 
3.1. The single shear layer 

We will begin by discussing the simulation in which we have discretized the flowfield 
into only one layer of vortex filaments in the (x,y)-plane (figure 1). This approach 
assumes that the second, weaker boundary layer emanating from the splitter plate 
quickly disappears through cancellation with part of the stronger boundary layer, so 
that the downstream evolution is determined by the global velocity jump alone, 
CT,-U,. Even though we show in $3.2 that including both boundary layers results 
in closer agreement with experimental observations, we do see some of the basic 
shear-layer features in this simpler case with only one sign of vorticity. This means, 
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- u, 
FIQURE 1. Discrete vortex filament representation of a shear layer with only one sign of vorticity. 
A smooth vorticity distribution is achieved when the filament core parameter is much larger than 
the filament spacing. The circulation of each filament is a function of the velocity jump U,- [TI and 
the filament spacing in the streamwise direction. The streamwise direction is in x, the spanwise in 
y, and the transverse direction in z. 

however, that in the single-layer calculation, the velocity ratio of the two streams 
forming the shear layer is not uniquely defined, since an arbitrary constant velocity 
in the flow direction can be added. We will track the configuration of the filaments 
in a reference frame moving with the average velocity +(U,+U,), so that only the 
velocity jump needs to be specified ; the total circulation per unit length is U ,  - U,. 
Our control volume encompasses two wavelengths in the streamwise and three 
wavelengths in the spanwise direction. The vorticity layer is discretized into 99 
filaments with initially 13 nodes each. In order to be able to compare our results to 
the experimental observations of Lasheras & Choi (1988) who impose periodic 
perturbations in the spanwise direction, we start our calculation with a sinusoidal 
dislocation of each filament centreline of amplitude 0.01. However, in contrast to 
their experiment, where the streamwise Kelvin-Helmholtz waves grow naturally, we 
also slightly force this instability with a smaller amplitude of 0.001. The initial 
perturbations consist of a displacement of the filament centres out of the plane of the 
vorticity layer. We chose the Kelvin-Helmholtz wave to have a length of 2n, which 
is about 1.4 times the length of the most amplified wave but in the wavenumber 
range where the discrete-vortex method duplicates the inviscid-stability-theory 
results. Based on experimental observations by Bernal (1981), we set the ratio of 
spanwise to streamwise wavelength to be slightly larger than g. The length and width 
of our control volume are 47c and 13.5, respectively. 

In addition to the extra computational cost for carrying out three-dimensional 
calculations, there arises a great difficulty in comprehending the results. Looking a t  
pages of numbers does not work, plotting velocity profiles is of some help, but the use 
of discrete-vortex methods requires further calculation for the determination of 
velocities. Drawing projections of the vortex filaments indicates which spatial 
volumes have intense vorticity, but still leaves the relations between filaments 
something of a mystery. Interactive graphical computing allows one to rotate and 
move dynamically through the data base and is the best means towards 
understanding (Zabusky 1981). Although slightly less convenient, computer- 
generated movies do produce the dynamical effect but usually require much effort to 
obtain just the right viewpoint to see what is happening in a particular region during 
a certain time period. 

Given the restrictions of static figures, we attempt to explain the development of 
our shear layer, which was perturbed in the streamise and spanwise direction. Those 
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FIGURE 2. Top (a )  and side views ( b )  of the single shear layer a t  time 117.5. The amplification of 
the streamwise wave leads to the formation of two regions of concentrated spanwise vorticity. The 
transverse vorticity component generated by the initial perturbation becomes tilted into the 
streamwise direction by the global shear. 

nodes which, as a result of the initial spanwise perturbation, were displaced upwards 
into the faster stream, experience an acceleration in the flow direction, whereas those 
nodes initially displaced into the lower, slower stream are being decelerated. In this 
way, the global shear transforms the transverse component of the vorticity 
generated by the initial perturbation into a streamwise component, as can be seen in 
figure 2. The side view is a projection of the filament node point locations and the line 
length drawn in the side view indicates the excursion amplitude of the filament. This 
process, by which transverse vorticity evolves into streamwise vorticity, is also 
observed by Lasheras & Choi (1988) in their experiments (see their figure 19). A t  this 
time, the Kelvin-Helmholtz instability has begun to form two regions of 
concentrated vorticity, as seen in the top view, figure 2. In  a coordinate system 
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FIGURE 3. Qualitative picture of the streamline pattern in the (x, 2)-plane between the spanwise 
rollers in a reference frame moving with the average velocity i(U1+U2).  The strain field in the 
vicinity of the free stagnation point leads to the stretching of the vortex lines. 

moving with the two-dimensional rollers, this results in the formation of a local 
stagnation point in the braid region, the braid being the thinning vorticity region 
between the two-dimensional rollers. The stagnation point forms because outer fluid 
that is brought into the layer by the concentrated vorticity must divide into two 
streams: one winds around the upstream vorticity and the other one around the 
downstream vorticity. The nature of the strain field close to the free stagnation point 
is qualitatively sketched in figure 3. Hence filaments that cross the dividing stream 
surface in the stagnation region will undergo large amounts of stretching (a filament 
will cross these developing stream surfaces owing to the initial perturbations or, in 
the spatially developing mixing layer, owing to upstream disturbances). 

As we proceed in time, the regions of concentrated vorticity develop into strong 
spanwise rollers, while the amplitude of the related strain field increases, figure 4. 
Further clustering or pairing of vorticity will not occur in the present calculation 
because we have not included any subharmonic disturbances (lower frequency, 
longer wavelength). We now have the situation analysed by Lin & Corcos (1984), 
namely the presence of alternating signs of streamwise vorticity in the thin braid 
region and subject to an outer strain field. As predicted by their analysis, the 
waviness of the filaments left in the braids grows as they undergo a continuing 
reorientation into the direction of the major strain axis (figures 4 and 5). This 
stretching is achieved by the vorticity becoming aligned with the extensional part of 
the strain field. The total length after time t is given as 

where q(t)  is the time dependent strain along the filament. The maximum strain rate 
does not need to be much larger than the mean value in order to produce large 
stretching ; it is the continuous application of strain along the vortex filament 
combined with the exponential weighting that increases the filament arclength. 

While a t  time t = 182.5 we still observe a thin sheet of alternating streamwise 
vorticity, we find a t  t = 245, figure 6, which is the final state of our simulation, that 
this sheet has collapsed into concentrated vortices, again in agreement with the 
analysis of Lin & Corcos (1984). These concentrated streamwise vortices of opposite 
sign create regions of upflow and downflow across the layer. Since the vortex tubes 
move along with the fluid, they follow this motion, as can be seen in the front view, 
and this effect creates the appearance of wisps, seen in the side view. While in our 
simulation those filaments in the outer regions of the spanwise rollers show relatively 
little variation in the spanwise direction, the ones a t  the roller centre do clearly 
develop a spanwise undulation. This appears to be a manifestation of the core 
instability mode investigated by Pierrehumbert & Widnall (1982) which they called 
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FIGURE 4. Top (a )  and side views ( b )  of the single shear layer at time 145. The filaments located 
in the braids and in the centres of the evolving spanwise rollers experience the most stretching. 

the translative instability. However, there are two major differences between their 
analysis and our simulations : they consider infinitesimal disturbances in the 
symmetrical Stuart type vortices and we follow the nonlinear evolution of vorticity 
given by the Kelvin-Helmholtz instability. As can be seen by comparing figures 4 
and 5, the plane of the wavy filament centreline slowly rotates during the shear-layer 
roll-up process, and this counteracts the growth of the core instability into any one 
particular direction. This rotation effect reduces the three-dimensional distortion of 
the roller cores in comparison to the streamwise development seen in the braid 
region. At the end of our simulation, the roller cores have made a few revolutions and 
we see an ‘out-of-phase’ character in the streamwise vorticity components in that a t  
those spanwise locations where a loop of braid vorticity points downstream, the 
roller-core has an upstream loop, see figures 4 , 5  and 6. Likewise, the core streamwise 
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FIGURE 5 .  Top (a )  and side views ( b )  of the single shear layer a t  time 182.5. The filaments located 
in the braid region have been stretched the most and are becoming aligned with the extensional 
strain direction. 

vorticity points downstream a t  those spanwise positions where the braid streamwise 
vorticity points upstream. This ‘ out-of-phase ’ configuration is also observed 
experimentally by Lasheras & Choi (1988), and we will discuss it further in $4. 

Since the present shear layer has only one sign of vorticity, it retains certain 
symmetry properties with respect to the flow direction as well as to the spanwise 
direction. This symmetry manifests itself in that the filament configurations are 
antisymmetric about the centre of the braids in the side view, and that the counter- 
rotating streamwise vortices have constant spacing in the spanwise direction. As we 
will see in the next section, these symmetry properties are changed by including a 
second, weaker layer of opposite vorticity. 

In  order to be able to compare our numerical results to flow-visualization 
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FIGURE 6. Top (a) ,  side ( b )  and front views (c,) of the single shear layer a t  time 245. The sheet of 
alternating streamwise vorticity has evolved into concentrated streamwise vortices equally spaced 
in the spanwise direction. 

experiments, we have also plotted perspective views of an interface between the two 
streams forming the shear layer. For the present case with only one sign of vorticity 
in the flow, we have tracked the evolution of several hundred passive marker 
particles which represent a small section of the interface. Initially, this interfacial 
element is located at the edge of the rotational layer on the slow side and is close to 
the region where we expect the formation of the braid region with the free stagnation 
point. Consequently, this initially small area undergoes considerable stretching as it 
wraps around the roller cores, figure 7. The side view and the near upstream view at 
this stage of the simulation also show how the interface folds around the concentrated 
streamwise vortices in the braid region. The regions of upflow and downflow between 
these streamwise vortices can clearly be identified. 
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FIGURE 7. Perspective view of an initially small section of the interface located in the braid region 
in the centre of the control volume: ( a )  View from a near downstream direction. ( b )  Side view; the 
flow is to the right a t  the top and to the left a t  the bottom. The interface has become entrained into 
the spanwise rollers and also wraps around the concentrated streamwise vortices. 

3.2. Two unequal vmticrity layers 

In  order to obtain a more realistic representation of the mixing layer forming 
downstream of a splitter plate, we now consider the flowfield to be composed of two 
unequal boundary layers. Thus, by assuming that cancellation effects of the two 
opposite signs of vorticity are negligible during the initial stages of the mixing-layer 
growth, we define the free-stream velocities U ,  and U ,  and thereby the velocity ratio. 
This is in contrast to the previous simulation which used only one sign of 
vorticity. 

The shear layers are represented by two layers of equal thickness in (x, y)-planes 
which have circulation of opposite signs: the upper layer with the negative 
circulation causes twice the velocity jump of the lower layer of positive circulation. 
Therefore, in the transverse direction the streamwise velocity changes by a factor of 
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two, see figure 8 (b) .  We have extended the control volume of the previous simulation 
so that there are three wavelengths in both the streamwise and spanwise direction 
(67~: by 13.5). In  the streamwise direction each vorticity layer is discretized into 75 
filaments giving a spacing of tc in order to  start with a smooth distribution of 
vorticity. Each filament initially consists of 27 nodes. The two layers are located a t  
z = 0.65, resulting in a slight overlap initially, so that the minimum velocity is 0.35 
instead of zero. This means that we start our simulation a t  some location 
downstream of the splitter plate where the defect in the average velocity profile is 
already beginning to disappear. The initial perturbation is identical for both 
vorticity layers and is the same as in the single shear-layer case, namely a 
displacement of the filament centrelines out of the (x. y)-plane. The streamwise 
amplitude is 0.001 and the spanwise is 0.01. 
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At an early stage (figure 8) ,  the upper, stronger layer (shown as solid lines) has 
already developed a slightly nonlinear character and is starting to form regions of 
concentrated vorticity, while the lower layer (drawn as dashed lines) still appears to 
be close to a linear wave. In  figures 9 and 10 we present side views of each sign of 
vorticity separately since we cannot use different colours to distinguish between the 
filaments of positive and negative circulation. I n  addition, we have drawn several 
sketches of those particular filaments which exhibit the most stretching, see figures 
11 and 12. In  figure 9 ( b )  we recognize that the stronger negative circulation clearly 
dominates the flow. It has formed spanwise rollers with a spacing equal to the initial 
streamwise perturbation wavelength. Filaments of the opposite sign of circulation 
have almost traversed the layer, as the strain pattern pulls them into the rollers. We 
must be cautious about the interpretation of how the two signs of vorticity 
intermingle, since we discretized the continuous sheets of vorticity but do not add 
new filaments in order to maintain a continuous vorticity layer. Thus, we face the 
possibility that the two signs of discrete vorticity may pass through each other 
during the course of the nonlinear motion. Increasing the number of filaments would 
decrease this effect, but it would also result in a much higher computational cost. 

As in the single-layer calculation, we observe that the initial spanwise perturbation 
develops into alternating signs of streamwise vorticity. However, while in the one- 
layer case those filaments a t  the centre between two spanwise rollers experience the 
most stretching, we now find that the filaments with the strongest spanwise 
modulation are located closer to a downstream roller. In  figures 9 and 10 we have 
labelled those filaments a and b. I n  figure 10 at  time 226.25, filament a goes from the 
top of one roller to the bottom of the upstream roller, whereas filament b has 
remained in the braid region. Tracing these filaments in the top views is difficult, so 
we have drawn sketches of the development of these filaments. Figure 11 presents 
several views at two different times of just filaments a and b for better clarity. The 
curvature and sign of circulation of filament a a t  its largest x-location is such that it 
induces a velocity which moves filament b in the positive z-direction. This is also the 
direction in which the strong vorticity rollers wish to convect this flow region. The 
combination of all these factors results in a narrow vorticity structure with 
streamwise vorticity vectors alternating in sign. The spanwise distance of these 
structures is given by the initial spanwise disturbance wavelength, whereas the width 
of a single structure is only 1.5 units or one-third of the spanwise wavelength. The 
creation of these structures, along with their reduced core size due to filament 
stretching, results in large fluctuations in the z-velocity : a passive scalar would see 
narrow regions of upwelling surrounded by downward motion. I n  figure 9, we can see 
that filament a also pulls up sections of the opposite vorticity layer. I n  figure 10 these 
filaments add a further modulation to the z-velocity fluctuation. 

As in the case of the single shear layer, for early times we observe an out-of-phase 
waviness of the cores of the spanwise rollers, figures 8 (a) and 9 (a). Towards the end 
of the simulation, however, the filaments of the weaker layer get pulled into the 
spanwise rollers and seem to destroy the very regular waviness of the cores, figure 
lO(a). This means that the change in the global strainfield caused by the weaker layer 
seems to affect the translative instability mechanism. 

Sketches in figure 12 show the relative locations of the filaments with opposite 
signs of circulation in a part of the region occupied by filaments a and b. In  
particular, we are interested in the deformation of a Lagrangian interface between 
the high- and low-speed fluids. As the stronger vorticity forms the two-dimensional 
roller, some of the weaker filaments are also pulled into the roller, as described above 
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FIQURE 9. Top ( a )  and side views ( b )  of the two unequal shear layers at time 191.875. Side views 
are presented separately for the upper, stronger layer and the lower, weaker layer. Notice how the 
stronger layer forms spanwise rollers as a result of the Kelvin-Helmholtz instability, and how the 
filaments marked a and b undergo large streamwise stretching. The weaker layer experiences a 
more uniform stretching and becomes partly entrained into the spanwise rollers, so that both signs 
of vorticity can be found a t  almost any transverse coordinate between the maximum and the 
minimum values. 
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FIGURE 10. Top ( a )  and side views ( b )  of the two unequal shear layers a t  time 226.25. In  the upper, 
stronger layer of vorticity the section of the braids undergoing the strongest stretching is not 
located a t  the centre between the rollers as in the one-layer simulation, but closer to the 
downstream roller. The filament marked a is now stretched from the top of one roller to the bottom 
of the upstream roller. Some of the weaker filaments of the lower layer wrap around the spanwise 
rollers. Since no subharmonic perturbations were introduced initially, we do not observe a pairing 
mode. 
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FIGURE 11. Sketches of filaments a and b a t  the times of figures 9 and 10 from different views. 

A’ 
I 

/ 
A 

A’ 
I 

/r”. 
A 

A - A ’  

A - A ’  

FIQURE 12. Relative locations of the two signs of circulation during the formation of the streamwise 
structures sketched in figure 11. In views of the section A-A’ the stronger negative circulation is 
shown by filled circles. Because these filaments loop into and out of plane A-A’, each filament type 
exhibits both directions of rotation. The front view indicates the reduction of the spanwise 
separation of the ‘legs ’ of the positive filaments. 
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\ / /  \ /  v Y 
FIGURE 13. Perspective near top view of the interface separating the two unequal shear layers of 
opposite sign at  time 141.25. The flow is from left to right. The shape of the interface reflects the 
growth of the two-dimensional Kelvin-Helmholtz instability as well as the spanwise modulation 
due to the evolving streamwise vorticity. 

and sketched in figure 12. As a result, weaker filaments get reoriented in such a way 
that they develop a component of vorticity pointing in the circumferential direction 
of the spanwise rollers. Now in the region above the centre of the spanwise roller 
( z  > 2), the weaker filaments move up and the stronger one moves down, producing 
a folding in the interface as shown in figure 12. In  the lower region ( z  < l ) ,  the 
stronger filaments reduce the spanwise separation between the ‘legs’ of the weaker 
filaments which causes the lower layer to look like a mushroom shape in the top view, 
see figure 10(a). 

The evolution of these narrow structures spaced relatively far apart in the 
spanwise direction is also visible in the perspective views of the computed interface. 
At time t = 141.25, the perspective view in figure 13 shows that the interface has 
developed a wavy deformation in both the streamwise and the spanwise directions, 
with a crest forming where i t  is being pulled into the evolving spanwise roller. The 
deformation in the spanwise direction a t  this time still resembles a sine wave, since 
the nonlinear evolution of the vorticity field has not yet produced the narrow 
streamwise structures. At a later time t = 160.0, however, their presence is reflected 
by the interfacial shape, figure 14. Short arcs in the regions of upwelling fluid are 
connected by long gentle arcs where the fluid is being displaced downwards. The 
modulation of the flow in the spanwise direction also becomes obvious from the fact 
that at different spanwise positions the interface is being pulled into the rollers at  
different rates. So if we look at the flow from the top (figure 15), the ‘overlap’ of the 
interface is much more pronounced a t  some positions than a t  others. All of these 
features can also be seen in flow-visualization experiments of Lasheras & Choi (1988), 
thus strengthening our confidence in the numerical simulation. Comparison of the 
experimental and numerical interfaces a t  later times, however, requires a more 
sophisticated hidden line-plot routine, and in addition it should be based on cuts 
through the interface along all three axes in order to extract the information 
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FIGURE 14. Perspective view of the interface separating the two unequal, opposite shear layers a t  
time 160.0. (a )  Kear-side view; the flow is from left to right. ( b )  Near-top view; the flow is from left 
to right. A t  this time, the interface has begun to wrap around the spanwise rollers. In  the spanwise 
direction it shows long, gentle arcs between the streamwise vorticity structures and short arcs a t  
the locations of the streamwise vortices. The waviness of the interface in the spanwise direction 
indicates regions of upward and downward motion. 

necessary for the identification of the interface dynamical evolution. We have started 
such an investigation (Meiburg & Lasheras 1986). 

Some of the highly nonlinear motion described above may be sensitive to how 
many filaments are used to discretize the initial vorticity layer. In  particular, the 
braid region is depleted of vorticity by the two-dimensional strain field of the 
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FIGURE 15. Perspective near top view of the interface separating the two unequal shear layers a t  
time 178.75. The flow is from left to right. The interface wraps around the spanwise rollers between 
the locations of the streamwise vortices and thus generates a 'tongue' structure in the top 
view. 

Kelvin-Helmholtz instability and thus in future simulations more, but weaker, 
filaments could be inserted in the braid region compared to the region that becomes 
the core. 

The interface and the filament configuration for the case of the single-vorticity 
layer (figure 7) do not' show the asymmetry in the streamwise and spanwise directions 
observed in the two-vorticity layer simulation. This shows that the formation of the 
narrow streamwise structures found in experiments and calculations is a result of the 
nonlinear interaction between the two-vorticity layers. The loss of symmetry in the 
two-layer calculation is related to the enhancement and reduction of relative 
streamwise displacements for filaments in the stronger layer by the addition of the 
second layer of vorticity. Stronger-layer filaments with initial transverse per- 
turbations respond differently to the effect of the weaker vorticity depending on their 
streamwise location with respect to the free stagnation point, see figure 8. It appears 
that the three-dimensionality occurs first in the downstream half of the braid region. 
Another significant difference in the two calculations is the spanwise spacing of the 
streamwise vorticity : the single layer produced alternating streamwise filaments 
spaced a t  half of the initial disturbance wavelength, whereas in the two-layer 
calculation the weaker vorticity produces a nonlinear effect and creates structures of 
spanwise width equal to one-third of the initial wavelength and without streamwise 
symmetry. 

3.3. T h e  effect of loculized spanwise perturbations 

Lasheras et al. (1986) generated streamwise vorticity by a single localized disturbance 
on the splitter plate and they observed a flow pattern downstream of the splitter 
plate which is similar to the pattern seen in naturally growing mixing layers or in 
mixing layers with imposed periodic spanwise perturbations. Lateral spreading of 
the localized streamwise struct>ures occurs during t'he two-dimensional roll-up and 
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pairing process. Aref & Flinchem (1984), approximated these conditions by 
numerically studying a single-vortex filament with its velocity dependent only on 
filament curvature and imbedded this filament in a uniform shear field. They found 
that an initial disturbance of the filament, corresponding to a soliton, generates 
spanwise wiggles with a spacing of A = (TL/U);  where U / L  is the applied shear and 
I' is the circulation of the filament. Pierrehumbert (1986) shows that the linear 
stability characteristics of this filament model yield a dynamical evolution similar to 
that resulting from the full nonlinear dynamics considered by Aref & Flinchem. The 
self-induced rotation of disturbances and the applied shear give a preferred 
wavelength for maximum growth, the same wavelength as empirically determined 
by Aref & Flinchem. Only filaments with rotation in the same sense as the imposed 
shear will experience exponential growth of disturbances ; filaments of opposite 
circulation are also unstable but not exponentially, and hence the selection of a 
preferred wavelength is not so evident. Both of the calculations result in asymmetric 
wave shapes which may be caused by the self-induced translation of a helically 
twisted filament. 

The above-mentioned experimental and theoretical observations indicate that a 
localized perturbation under the influence of a global shear spreads out in the 
spanwise direction in an almost periodic fashion, so that i t  ultimately leads to a 
configuration similar to  that caused by a periodic disturbance. We have attempted 
to simulate numerically the effect of a local perturbation when the filament dynamics 
are determined by the full Biot-Savart integral. For that purpose, we perturbed all 
the upper-layer filaments in a spanwise region centred around the middle of the 
spanwise coordinate, y. The perturbation is a displacement in the transverse 
direction over the positive part of a sine wave, i.e. the disturbance wavelength is 
A, and the spanwise extent of the disturbance is half of A,. 

In  the simulation shown in figure 16(a), A, is 4.5 and the sine wave amplitude is 
0.001. This small amplitude was used because the discontinuous filament curvature 
generated strong three-dimensional effects and hence required a large number of 
nodes. In  a second calculation, shown in figure 16(b), A, is 13.5 and we took the cube 
of a sine wave with amplitude 0.01. The main difference between these two 
simulations lies in the smoother curvature distribution of the cubic. Since the two- 
vorticity layers have a separation of 2.6 core radii in the transverse direction, we can 
consider them to  be initially independent of each other. In  both simulations we 
observe that the filaments of the stronger layer develop large distortions, while those 
of the opposite weaker layer remain almost straight. Since we perturbed all the 
filaments of the stronger layer in an identical fashion, isolated filaments in a uniform 
shear field, as analysed by Aref & Flinchem, do not appear in our simulation. From 
several computer runs, we find the scale of the spanwise response to be independent 
of the disturbance wavelength A,, the initial amplitude, and the details of the initial 
wave shape. Rather we observe the rapid growth of wiggles a t  those locations along 
the filaments where the initial perturbations caused the largest curvature. In  order 
to determine if the spanwise development could be given by ( I 'LIU); ,  we also carried 
out runs in which we varied the shear rate U I L ,  or the filament circulation, I'. With 
a constant shear rate, we made runs with filament circulation either twice or half the 
value used in figure 16 and did not observe any change in the dominant pattern that 
is seen in figure 16. Reduction of the shear strength was achieved by doubling the 
vortex-core diameter as well as the initial distance between the two-vorticity layers. 
The resulting structures have a width which is essentially twice that shown in figure 
16 and thus scales with the change in the core parameter. 
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In  all cases, the spanwise response appears to exhibit a wavelength that is a small 
multiple of the core radius. Hence we cannot exclude the possibility that the spurious 
short wavelength instability of our filament model determines the spanwise scale 
evolving from these localized disturbances. Unlike the simulations considered in this 
section, the initial periodic spanwise disturbances described in $93.1 and 3.2 do not 
contain curvature discontinuities, and thus they do not initially excite the short- 
wavelength response. Rather they lead to a smooth evolution of the flowfield, in 
which vortex stretching ultimately leads to highly curved vortex filaments. Since in 
the long-wavelength limit the stability characteristics of the filament model are 
correct, we have more confidence in the early three-dimensional development of the 
periodic disturbances than in the short-wavelength response shown in figure 16. It is 
not entirely clear a t  this point what might constitute the best way to simulate small- 
wavelength perturbations with the vortex dynamics technique. 

4. Comparison with experimental observations 
While we have carried out a numerical investigation of the evolution of a 

temporally evolving shear layer with an imposed periodic spanwise perturbation, 
Lasheras & Choi (1988) have investigated experimentally a spatially growing mixing 
layer with similar perturbations. The ratio of free-stream velocities in their 
experiments is approximately 2.27 as compared to 2.0 in our simulation. They 
introduce periodic spanwise perturbations by giving the trailing edge of the splitter 
plate a sine wave modulation either in its own plane or in a plane perpendicular to 
the plate. Using laser induced fluorescence as well as direct interface visualization, 
they develop a detailed picture of the two- and three-dimensional processes which 
determine the early stages of the mixing-layer growth. As we will see, a comparison 
of the numerical and the experimental results shows good agreement and contributes 
to a more complete understanding of the evolving flow patterns. 

Both the experiment and the numerical simulation are dominated initially by the 
growth of the two-dimensional Kelvin-Helmholtz instability, which leads to the roll- 
up of the layer and the formation of spanwise rollers. During this phase, the global 
shear tilts the transverse vorticity component, which was introduced by the initial 
perturbation, into the flow direction. This can be seen in the side views presented in 
figures 2 and 8 and is also sketched in Laheras & Choi (1988), figure 19. The evolving 
two-dimensional strain pattern leads to the intensive stretching of this streamwise 
vorticity component in the vicinity of the free stagnation points. In  this process, the 
braid vorticity reorients itself along the major axis of the strain field and develops 
a strong streamwise component. As a result, the wave crests evolving during the roll- 
up of the interface begin to show a spanwise modulation visible both in the 
simulation (figure 13) and in the experiment (Lasheras & Choi 1988, figure 6) .  As we 
proceed in time, the experiment shows the formation of narrow streamwise 
structures of counterrotating vortices, although the initial perturbation had been of 
sinusoidal character. Thus, we see the same nonlinear behaviour that we also observe 
in our simulation employing two signs of vorticity, figure 10. The equal spacing of 
the counterrotating streamwise vortices displayed by the simulation neglecting the 
weaker boundary layer (figure 6), is not seen in the experiment. Both in the 
experiment and in the two-layer calculation we find that a t  the spanwise locations 
of the streamwise vortices the interface entrainment is reduced in comparison to 
locations between the streamwise structures. Looking a t  the interface from the top, 
we observe the formation of ‘tongues ’ where the interface wraps around the spanwise 
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rollers between the streamwise structures (figure 15 and Lasheras & Choi, figure 14). 
This demonstrates the impact of the three-dimensional structure on the growth of 
interfacial area. 

Lasheras & Choi conclude from their flow-visualization experiments that  the 
streamwise structures always originate in the braid region, and on the basis of our 
simulations we can confirm that statement. In  the braids we see the situation of a 
sheet of streamwise vorticity of alternating signs which then experiences strong 
stretching in the strain field of the spanwise rollers. The initially nearly spanwise 
vorticity aligns itself with the major axis of strain and ultimately collapses into 
concentrated vortices. This confirms the analysis given by Lin & Corcos (1984) and 
Neu (1984). On the other hand, the translative instability of the roller cores 
suggested by Pierrehumbert & Widnall (1982) appears to grow only during the very 
early stages of the flow. A moderate out-of-phase waviness of the roller cores is 
observed both in the numerical simulation (figures 5 and 6) ,  and in the flow 
visualization (Lasheras & Choi, figure 13). However, during the later stages it seems 
that the slow continuous rotation performed by the roller cores in the process of the 
roll-up counteracts their instability, and neither the experiment nor the simulation 
exhibits any further growth of the core pattern. In  general, our numerical results as 
well as the experimental observations of Lasheras & Choi resemble much more 
closely the pattern of alternating signs of streamwise vorticity inferred by Bernal 
(1981) from laser sheet illuminations. 

Jimenez, Cogollos & Bernal (1985) record mixing information on films via laser 
induced fluorescence of a dye added to the low-speed flow. The laser light is 
introduced in a sheet normal to the flow direction in order to examine the three- 
dimensional structure. They present perspective views of what they deduce to be 
counterrotating vortices, and attempt to estimate the streamwise circulation from 
the geometry of the interface in the braid region. By balancing the strain effect of the 
two-dimensional vorticity with the induced velocity from the alternating streamwise 
structures, they estimate the circulation ratio to be 0.6 k 0 . 8  (streamwise over 
spanwise circulation ; the large uncertainty is caused by the small sample of 23). In  
the spanwise direction they determine the interface amplitude to spacing ratio to be 
0.6 f 0.2, a value which corresponds to the one that we observe during the late stages 
of our interface simulation. From this ratio their model predicts, for our conditions, 
a circulation ratio of 0.64. In  our calculation there are sixteen filaments wrapped into 
the core region, and thus there should be ten filaments pointing in the stream 
direction. At this stage of the calculation we only see two filaments of the strong 
layer, and depending on the x location, one to four filaments of the weaker layer 
(figure 10). While our discretization of this region a t  the final simulation time has 
become relatively poor and our calculated flow has not undergone any pairings of the 
two-dimensional rollers, we see a very complex structure emerging in the stream 
direction that is not a simple counterrotating vortex pair. Hence, the circulation 
estimates based on interface shape may not be very realistic. We have to keep in 
mind that the experimental information does not directly visualize the vorticity but 
instead records the interface of a scalar which is convected by the vorticity, and the 
actual structure may be much more complex than simple alternating signs of 
concentrated vorticity. 
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5. Conclusions 
We have presented a numerical study of the evolution of the two- and three- 

dimensional instabilities in the plane shear layer. Knowledge of these instability 
mechanisms and the evolving structures is required in order to obtain any control 
over chemical reactions in such a flow. By means of Lagrangian vortex dynamics 
simulations we have been able to give a detailed description of the early two- and 
three-dimensional stages of the shear-layer development that results from given 
initial disturbances. Our calculations show that the concentrated streamwise vortices 
originate in the braid region between the spanwise rollers, whereas the translative 
core instability does not grow beyond small amplitudes. 

While a single-layer simulation leads to certain symmetry properties of the 
flowfield both in the streamwise and in the spanwise direction, the inclusion of a 
second, weaker vorticity layer of opposite circulation eliminates this symmetry. 
From a comparison of our results with the flow visualization experiments of Lasheras 
& Choi (1988) we conclude that both boundary layers emanating from the splitter 
plate should be included in a mixing-layer simulation. Only by doing so can we 
observe the evolution of the narrow streamwise structures seen in the experiment. A 
further important conclusion to be drawn from the vortex dynamics simulations is 
that  the processes dominating the early stages of the mixing-layer development can 
apparently be understood in terms of essentially inviscid vortex dynamics. 

Our simulations do not reveal any single disturbance which causes ‘the’ three- 
dimensional instability of the plane mixing layer. From the experimental work, i t  
appears that the origin of the streamwise vorticity lies in any upstream ‘disturbance 
that creates vorticity with components other than in the spanwise direction. The 
mutual induction of non-spanwise vorticity and/or the stretching effect of the mean 
shear velocity will intensify any non-zero streamwise vorticity when viscous effects 
are small. 

I n  comparison with Eulerian finite-difference or spectral techniques, the 
Lagrangian vortex method has advantages and disadvantages. The Lagrangian 
scheme as a natural adaptive mesh presents a distinct advantage for unbounded 
flows, whereas in a wall-bounded flow it is clear where an adaptive fixed mesh should 
concentrate the grid points. The grid-free Lagrangian method avoids the artificial 
diffusion introduced in grid convection schemes, but time integration errors in the 
Lagrangian trajectories may contribute to an artificial growth in the second moment 
of a vorticity distribution described by a collection of discrete vortices. We know 
that the assumption of a constant vortex core shape violates local strain effects, but 
there is a corresponding problem present in Eulerian solutions of the Navier-Stokes 
equations, where the strain field may create structures that diminish in size and 
cannot be resolved on the selected mesh spacing. Of course, the use of more node 
points in either method will reduce this effect but will also increase the computational 
cost. For research purposes, we feel that the Eulerian and Lagrangian methods 
complement each other and the advantages of each method should be exploited by 
appropriate application. 

The current algorithm uses continuous filaments described by cubic splines with 
second-order integration in space and time. This numerical scheme presents an 
improvement over previous work using straight segments between node points. Even 
so, the calculations have only been carried out until the initial filament arclength 
doubled. At this point we reach the limit of the present scheme due to the 
diminishing timestep and the increasing number of node points. In  order to be able 
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to continue the flow further into the nonlinear regime, the method needs to be 
changed in several ways : (i) the filaments could be filtered in space to remove sections 
where the radius of curvature is less than the core radius ; (ii) a local timestepping 
variant could be developed, i.e. regions where filaments experience large rotation 
rates, and hence acceleration, could be treated separately in order not to reduce the 
timestep for all node points; (iii) the Biot-Savart interaction could be split into long- 
and short-range effects in order to decrease the square dependence on the number 
of node points, and (iv) further development is needed in the core model and its 
implications for short-wavelength disturbances and energy conservation. 
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